
The Naming System Venture

Hans Reiser

November 21, 2007

Abstract

For too long the file system has been semantically impoverished in
comparison with database and keyword systems. It is time to change! The
current lack of features makes it much easier to use the latest set theoretic
models rather than older models of relational algebra or hypertext. The
current file system syntax fits nicely into the newer model.

The utility of an operating system is more proportional to the number
of connections possible between its components than it is to the number
of those components. Namespace fragmentation is the most important
determinant of that number of possible connections between OS compo-
nents. Unix at its beginning increased the strategy. Let’s take the file
system namespace, and one-by-one eliminate the reasons why the filesys-
tem is inadequate for what other namespaces are used for, one missing
feature at a time. Only once we have done so will the hobbles be removed
from OS architects, or even OS conspiracies.

Yet before doing that, we need a core architecture for the semantics
to ensure we end up with a coherent whole. This paper suggests a set
theoretic model for those semantics. The relational models would at times
unacceptably add structure to information, the keyword models would
at times delete structure, and purely hierarchical models would create
information mazes. Reworking their primitives is required to synthesize
the best attributes of these models in a way that allows one the flexibility
to tailor the level of structure to the need of the moment.

The set theoretic model I propose has a syntax that is Linux, MacOS,
and DOS file system syntax upwardly compatible, as well as CORBA
naming layer upwardly compatible.

This is a planning document for the next major version of ReiserFS,
that is, a description of vaporware. It is useful to ReiserFS users and con-
tributors who want to know where we are going, and why we are building
all sorts of strange optimizations into the storage layer (and especially
those who are willing to help shape the vision in the course of discussions
on the reiserfs-list@namesys.com mailing list. . .). Currently the storage
layer for ReiserFS is working and useful as an everyday FS with conven-
tional semantics. That storage layer is available as a GPL’d Linux kernel
patch at http://namesys.com.

Introduction

Many OS researchers have built hierarchical namespaces that innovate in their
effect on the integration of the operating system (e.g. Plan 9 and their file

1

system [PPT+93]). Relational and keyword researchers rightfully scorn hierar-
chical namespaces as 20 years behind the state of the art [Dat86], but pay little
attention to integration of the operating system as a design objective in their
own work, or as a possible influence on data model design. I won’t go into that
here. Limiting associations to single key words is an unnecessary restriction.

A Naming System Should Reflect Rather than
Mold Structure

The importance of not deleting the structure of information is obvious; few
would advocate using the keyword model to unify naming. What can be more
difficult to see is the harm from adding structure to information; some do rec-
ommend the relational model for unifying naming (e.g. OS/400).

By decomposing a primitive of a model into smaller primitives one can end up
with a more general model, one with greater flexibility of application. This
is the very normal practice of mathematicians, who in their work constantly
examine mathematical models with an eye to finding a more fundamental set
of primitives, in hopes that a new formulation of the model will allow the new
primitives to function more independently, and thereby increase the generality
and expressive power of the model. Here I break the relational primitive (that a
tuple is an unordered set of ordered pairs) into separate ordered and unordered
set primitives.

Relational systems force you to use unordered sets of ordered pairs when some-
times what you want is a simple unordered set. Why should a naming system
match rather than mold the structure of information? For systems of low com-
plexity, the reasons are deeply philosophical, which means uncompelling. And
for multiterabyte distributed systems. . . ?

Reiser’s Rule of Thumb #2: The most important charac-
teristic of a very complex system is the user’s inability to learn
its structure as a whole.

We must avoid adding structure, or guarantee that the user will be informed
of all structure relevant to his partial information. Avoiding adding structure
is both more feasible and less burdensome to the user. Hierarchical, relational,
semantic, and hypersemantic systems all force structure on information, struc-
ture inherent in the system rather than the information represented. If a system
adds structure, and the user is trying to exploit partial knowledge (such as a
name embodies), then it inevitably requires the user to learn what was added
before he can employ his partial knowledge. With complex systems, the amount
added is beyond the capacity of users to learn, and information is lost.

Example:

“My name is Kali, your friendly whitepaper.html technical support
specialist for REGRES. Our system puts the Library of Congress online!
How many I help you?”

George doesn’t know Santa Claus’ name: “I’m trying to find the reindeer
chimneys Christmas man, and I can’t get your system to do it.”

2

chimneys
presents

reindeer
man

Figure 1: Graphical representation of a typical simple unordered set that is
difficult for relational systems

Kali says: “OK, now let’s define a query: is-a equals man, that’s easy.
But reindeer? Is reindeer a property of this man?”

“Uh no. I wish I could remember the dude’s name. I read this story
about him a long time ago, and all I can remember is that he had some-
thing to do with reindeer and chimneys. The story is on-line, some-
where.”

“‘Reindeer chimneys presents man’, that’s the sort of speech pattern
I’d expect from a three-year-old,” Kali corrects him. “Let’s see if we
can structure this properly. Is reindeer an instance-of of this man?
A member-of of this man? It couldn’t be a generalization of this man.
Hmmm. . . ”

“No! It’s not that complicated. They just have something to do with
him.”

“Pavlov would probably say you associate reindeer with this man, the
way the unstructured mind of an animal thinks. But here in technical
support we try to help our customers become more sophisticated. Is
reindeer a property of this man?”

“No. Try propulsion-provider-for.”

“Do you think that was the schema the person who put the information
in our system used?”

“No. Shoot. I can think of a dozen different columns it could be under.
But what are the chances that the ones I think of are going to be the
same as the ones the dude who put the information in used?”

Kali feels satisfaction. “Guess it can’t be done, not if you can’t structure
your REGRES query properly. I’ll put you down in my log as a closed
ticket. 190 seconds to resolution, not bad.”

“A keyword system could handle reindeer chimneys christmas man,”
George grumbles as he stares in despair at his display. Unfortunately,
the Library of Congress is only one of REGRES ’ many reference aids.
George could spend his life at it, and he’d never learn its schema.

“But a keyword system would delete even necessary structure inherent
to the information. It couldn’t handle our other needs!” Kali says before
she hangs up.

In addition to the searcher’s difficulties, having to manufacture structure by
specifying the column for reindeer also adds unnecessary cognitive load to the

3

author’s indexing tasks.

A Few of the Other Approaches to This Problem

There is lurking at the heart of my approach a subtle difference between my
analysis for naming, and the analysis of at least some others. I started my
research by systematically categorizing the different structures embodied by
names, placing them into equivalency classes, and then picking one syntax out
of each class of functionally equivalent naming structures, on the assumption
that each of the equivalency classes has value. For example, I considered that
languages sometimes convey structure by word endings (tags), and sometimes
by word order, but while the syntax differs, the word order and word ending
techniques are equivalent in their power to convery structure.

In my analysis of the effect of word ordering, I decided that either the order-
ing mattered, or it did not, and that was the basis for two different naming
primitives.

Others have instead studied the inherent structure of data, and then from that
derived ways of naming.

The hypersemantic system [SS77][PT88] represents an attempt to pick a man-
ageably few columns which cover all possible needs. Generalization, aggrega-
tion, classification, and membership correspond to the is-a, has-property,
is-an-instance-of and is-a-member-of columns, respectively. The minor
problem is that these columns don’t cover all possibilities. They don’t cover
reindeer, presents, or chimneys for George’s query. The major problem is that
they don’t correspond as close as is possible to the most common style of human
thought, simple unordered association, and require cognitive effort to transform.

The first response of relational database researchers to this is usually to ask:
“Why not modify an existing relational database to contain an ‘associated’ col-
umn, put everything in that column, and it would be functionally equivalent to
what you want.” This is like saying that you can do everything Pascal can do us-
ing TEX macros. (They are both Turing complete.) We don’t design languages
to be Turing complete, we design them to be useful. I have seen a colleague
do in six lines of SQL (nonstandard SQL) a simple three-keyword unorderd set
that I do in three words plus a pair of delimiters, and that traditional keyword
systems also handle easily. Doing simple unordered sets well is crucial for highly
heterogeneous namespaces, and the market success of keyword systems in In-
ternet searching is evidence of that. If you look at the structure of names in
human languages, they are not all tuple structured, and to make them tuple
structured might be to distort them.

I have merely discussed the burden of naming columns. Most relational systems
also require the user to specify the relation name. If column naming is a burden,
naming both the column and the relation is no less a burden.

Many systems invest effort into allowing you to take the key that you know,
and figure out all the relation names and columns that you might choose to
pair with it. This is a good idea, but not as good as not imposing extraneous
structure to begin with.

4

[Sal86] can be read for devastating critiques of the document clustering system,
but there is a worthwhile idea lurking within that system. Perhaps it is worth-
while to keep track of a small number of documents which are “close” to a given
document. The document creator could be informed upon auto-indexing the
document what other documents appear to be close to it, and asked to consider
associating it with them. This is not within our current plan of work, but I
don’t reject it conceptually.

In summary, modularity within the naming system is improved by recognizing
unordered grouping and ordering as two different functions that deserve separate
primitives rather than being combined into a tuple primitive. The tuple is an
unordered set of ordered pairs. There are other useful combinations of unordered
grouping and ordering than that embodied by the relation, and the success of
keyword systems suggests that a plain unordered set without any ordering at
all is the most fundamental and common of them.

Names as Random Subsets of the Information In
an Object

A system may still be effective when its assumptions are known to be false.

You may regard the above as an overstatement of the notion that we are neural
nets, and sometimes our abstract systems deal with assumptions that are not
true or false, but are somewhat true. After we are finished stating them in
English they lose the delicate weighting posessed by the reality of the situation.
Someteimes we find it easier to model without that weighting. Classical eco-
nomics and its assumption of perfect competition is the best-known example of
an effective system based on assumptions known to be substantially false. Intro-
ductory economics classes usually spend several weeks of class time arguing the
merits of building models on somewhat false assumptions. This paper will now
use such a somewhat false model to convey a feel for what mandatory pairing
of name components causes problems.

Assume the user’s information from which he tries to construct a description will
be some completely random subset of the information about the object. (Some
of that information will be structural, and the structural fragments selected will
be just as random as the rest.) Assume a user has 15 random clues of infor-
mation selected from 300 pieces of information the system knows about some
object. Assume the REGRES naming system requires that data be supplied
in threesomes (perhaps column name, key name, relation name), and cannot
use one member of a threesome without the other members of the threesome.
Assume the ANARCHY naming system lacks this restriction, but does so at
the cost that it can only use those 10 of the 15 information fragments which
do not embody structure. Assume the statistical distribution of the 15 pieces
of information the user has to construct a name with are fully independent and
equally likely (this is both substantially wrong, and unfair to REGRES, but
. . .) Assume each clue has a selectivity of 100 (it divides the number of objects
returned by 100).

Then ANARCHY has a selectivity of 10010 = 1020 = good.

5

REGRES has a selectivity of:

100(Cother two×15) = 100(9

300
×

8

300
×15) = 1.05 = very bad

where Cother two is the chance that the other two members of an object’s three-
some are possessed by the user.

While it is not true that the clues are fully independent, it is true that to the
extent that they are not fully dependent, ANARCHY will gain in selectivity
compared to REGRES. Attempting to quantify for any database the extent of
the dependence would be a nightmare, and so this model assumes a substan-
tial falsity, through which it is hoped the reader can see a greater truth. For
databases of the lower heterogeneity and complexity that the relational model
was designed for, the independence within a threesome can be small, and the
ability to also employ the 5 of 15 fragments which are structural is often more
important than the difficulty of guessing any structure added.

There is an implicit assumption here that you are looking for information that
others have structured, and this argument in favor of ANARCHY becomes much
less strong without this assumption. I feel obligated to stress once again that I
do not advocate low structure over high structure, but I do advocate having the
flexibility to match the amount of structure to the needs of the moment. Only
with such flexibility can one hope to use all of the 15 fragments that happen to
be possessed.

The Syntax In More Detail

What’s needed is a naming system intended to reflect just the structure inherent
in the information, whatever that structure might be, rather than restructuring
the information to fit the naming system.

Orthogonal or Unoriginal Primitives and Features

There are many primitives that the ultimate naming system would include but
which I will not discuss here: macros, OR, weight for subnames and AND–
OR connectors [SFW88], rules, constraints, indirection, links, and others. I
have tried to select only those aspects in which my approach differs from the
standard approach.

Unifying the namespace does not require unifying automatic name generation,
and those who read the [BM85] vs. [Sal86] controversy likely understand my
concluding that whatever the benefits might be of unifying automatic name
generation, it is not feasible now, and won’t be feasible for a long time to come.
The names one can assign an object are kept completely orthogonal from the
contents of the object in the implementation of this naming layer. It is up to the
owner of the object to name it, and it is up to him to use whatever combination of
autonaming programs and manual naming best achieves his purpose. He may
name it on object creation, and he may continually adjust its various names
throughout its lifetime. See the section defining the “〈Key Object〉 primitive”
for a discussion of why names should be thought of this way.

6

Technically, object creation only requires the object be given a 〈Storage Key〉.
In practice most users will in the same act that creates the object, also associate
the object with at least one name that will spare them from directly specifying
the 〈Storage Key〉 in hex the next time they make a reference to it. For appli-
cations implementing external name spaces, they can interact with the storage
layer by referencing just the 〈Storage Key〉.

Namesys will provide a manual naming interface, and the API autonaming
programs need to plug into it. Companies such as Ecila will provide autonamers
for various purposes.

Ecila is implementing a program which scans remote stores, creates links to them
in the unified name space, but leaves the data on the remote stores. Other
programs may also be implemented to perform this general function. To be
more specific, the Ecila search engine scans the web for documents in French,
and uses the filesystem as an indexing engine. However, they are writing their
engine to be a general purpose engine, they have sold support and the addition
of extensions to it to other search engine companies, and it is open source.
For now we are simply functioning as part of their engine, and the interface is
by web browser: at some point we may be able to add their functionality to
the namespace. While the implementation of Microsoft’s attempt to blur the
distinction between the filesystem name space and the web namespace is one
more of appearance than substance, it is surely the right thing to do for Linux as
well in the long run. We should simply make our integration one with substance
and utility, rather than integrating mostly the look and feel.

When the store is external to the primary store for the namespace, then stale
names can be an issue with no clean resolution. That said, unification at just
the naming layer is, in a real rather than ideal world, often quite useful, and so
we have Internet search engines.

GUI based naming is beyond the scope of this paper, except to mention that
it is common for GUI namespaces to be designed such that they are not well
integrated with the other namespaces of the OS. They are often thought to
necessarily be less powerful, but proper integration would make this untrue,
as they would then be additional syntaxes, not substitutes. These additional
syntaxes should possess closure within the general name space, and thereby be
capable of finding employment as components of compound names like all the
other types of names. The compound names should be able to contain both GUI
and non-GUI based name components. Integration would make them simply
the aspect of naming that applies to what is present in the visual cache of the
screen, and to how to manage and display that cache most effectively.

Vicinity Set Intersection Definition (Also Called Grouping)

Suppose you have a set X of objects. Suppose some of these objects are asso-
ciated with each other. You can draw them as connected in a graph.

Let the vicinity of an object A be the set of objects associated with A.

Let there be a set of query objects Q. Then the set vicinity intersection of Q is
the set of objects which are a member of all vicinities of the objects in Q.

7

When thinking of this as a data model, it seems natural to use the term vicinity

set intersection. When thinking of this syntactically, it seems natural to use the
term grouping, because it implies that the subnames are grouped together with-
out the order of the subnames being significant. There is exactly one data model
primitive (set vicinity intersection) posessing exactly one syntax (grouping), and
I rarely intend to distinguish data model primitive from syntax primitive (I can
be criticized for this), and yet I use both terms for it, forgive me.

Synthesizing Ordering and Grouping

I am going to describe a toy naming system that allows focusing on how best
to combine, grouping and ordering into one naming system. This synthesis will
contain the core features of the hierarchical, keyword, and relational systems
as functional subsets. It consists of a few simple primitives, allowed to build
on each other. It sets the discussion framework from which our project will
over many years evolve a real naming system out of its current storage layer
implementation.

Resolving the second component of an ordering is dependent on resolving the
first — unlike set theory. In set theory one can derive ordered set from unordered
set, but because resolving the name of the second component depends on the
first component one cannot do so in this naming system. For this reason it can
well be argued that this naming system is not truly set theory based.

Now that I have mentioned this difference I will start to call them grouping
and ordering, rather than unordered and ordered set. These two primitives take
other names as sub-names, and allow the user to construct compound names.
Either the order of the subnames is significant (ordering), or it isn’t (grouping),
and thus we have the two different primitives.

Because I have myself found that BNFs are easier to read if preceded by ex-
amples, I will first list progressively more complex examples using the naming
system, and then formally define it. The examples, and the simplified syntax,
use / rather than : or \, but this is of no moment.

Examples

Ordering and grouping are not just better; file system upward compatibility
makes them cheaper for unifying naming in OSes based on hierarchical file
systems than a relational naming system would be. This approach is fully
upwardly compatible with the old file system. Users should be able to retain
their old habits for as long as they wish, engage in a slow comfortable migration,
and incorporate the new features into their habits as they feel the desire. Elderly
programs should be untroubled in their operation. Many worthwhile projects
fail because they emphasize how much they wish to change rather than asking
of the user the minimal collection of changes necessary to achieve the added
functionality.

/etc/passwd

8

etc

passwd

Figure 2: Graphical representation of /etc/passwd

gandalf

dragon
bilbo

Figure 3: Graphical representation of [dragon gandalf bilbo]

[dragon gandalf bilbo]

Mr. B. Bizy looking for a dimly-remembered story (The Hobbit by Tolkien) to
print out and take with him for rereading during the annual company meeting.

case-insensitive/[computer privacy laws]

computer
privacy

laws

case-insensitive

Figure 4: Graphical representation of query

When one subname contains no information except relative to another subname,
and the order of the subnames is essential to the meaning of the name, then
using ordering is appropriate. This most commonly occurs when syntax barriers
are crossed. This is when a single compound name makes a transition from
interpreting a subname according to the rules of one syntax to interpreting it
according to the rules of another syntax. Ordering is essential at the boundary
between the name of the new syntax as expressed in the current syntax, and the
name to be interpreted according to that new syntax. Some researchers use the
term context rather than syntax. The pairing of a program or function name,
and the arguments it is passed, is inherently ordered. While that is usually
the concern of the shell, when we use a variety of ordering functions to sort
〈Key Object〉s of different types it affects the object store.

In this example the ordering serves as a syntax barrier. Case-insensitive is the
unabbreviated name of a directory that ignores the distinction between upper
and lower case. For Linux compatibility this naming layer is case sensitive by
default, even though I agree with those who think that it would be better were
it not.

9

love
letter

susan

my secrets

Figure 5: Graphical representation of searching for love letter to Susan

[my secrets]/[love letter susan]

Devhuman (that’s the account name he chose) is the company’s senior program-
mer. Six years ago he wrote a love letter to Susan, which he put in his read
protected secrets directory. (He never found the nerve to send it to her.) He’s
looking for it so he can rewrite it, and then consider sending it. Security is a
particular kind of syntax barrier (you have to squint a bit before you can see it
that way). Here the ordering serves as a security barrier. (He certainly wouldn’t
want anyone to know that an object owned by him with attributes love letter
susan existed.)

[subject/[illegal strike] to/elves from/santa document-type/RFC822

ultimatum]

subject

illegal strike

to

elves

from

santa

document-type

RFC-822
ultimatum

Figure 6: Graphical representation of search for Santa’s ultimatum

Devhuman knows his object store cold. He is looking for something he saw once
before, he knows that it was auto-named by a particular namer he knows well
(perhaps one whose functionality is similar to the classifier in [Mea]), and he
knows just what categorizations that namer uses when naming email. Still, he
doesn’t quite remember whether the word ‘ultimatum’ was part of the subject
line, the body, or even was just elvish manual supplementation of the automatic
naming. Rather than craft a query carefully specifying what he does and does
not know about the possible categorizations of ultimatum, he lazily groups it.
If Devhuman’s object store is implemented using this naming system with good
style, someone less knowledgeable about the object store would also be able to
say:

[santa illegal strike ultimatum elves]

10

and perhaps get some false hits as well as the desired email (instead of finding
mail from santa perhaps finding the elvish response). Notice that if you delete
illegal and ultimatum to get

[subject/strike to/elves from/santa document-type/RFC8221]

the query is structurally equivalent to a relational query. Many authors (e.g.
semantic database designers) have written papers with good examples of stan-
dard column names which might be worth teaching to users. So long as they
are an option made available to the user rather than a requirement demanded
of the user, the increased selectivity they provide can be helpful.

[is-a-shellscript bill]

is-a-shellscript

bill

Figure 7: Graphical representation of [is-a-shellscript bill]

This name finds all shellscripts associated with bill. Names preceded by
are pruners. Pruners are analogous to the predicate evaluators of relational
database theory. If you have read papers distinguishing between recognition
and retrieval, pruners are a recognition primitive. They are passed a list of
objects, and return a subset of that list which matches some criteria. They are
a mechanism appropriate for when a nonlinear search method that can deliver
the desired functionality is either impossible, or not supported by existing in-
dexes. There are many names for which we cannot do better than linear time
search algorithms (perhaps simply as a result of incomplete indexing) that are
useful. is-a-shellscript checks each member of its list to see if it is an exe-
cutable object containing solely ASCII. The user can use it just like any other
〈Key Object〉 within an association, it will prune the results of the grouping.
Since set intersections are commutative its order within the grouping has no
meaning, and optimizers; are free to rearrange it.

The Formal Definitions

〈Object Name〉 ::= 〈Grouping〉
| 〈Ordering〉
| 〈Key Object〉
| 〈Storage Key〉
| 〈Orthogonal and Unoriginal Primitives〉

;

See the section listing orthogonal and unoriginal primitives for a discussion of
what primitives I left out of the definitions of this grammar that are necessary
to a real-world working system.

The name resolver will have a method for converting all of the primitives into
〈Storage Keys〉, and when processing the compound names it first converts

11

the subnames into 〈Storage Keys〉, though the object may have null contents,
and serve purely to embody structure. This allows the use of anything which
anyone can invent a way of allowing the user to find a 〈Object Name〉 for, and
then invent a method for the resolver to convert the 〈Object Name〉 into a
〈Storage Key〉, as a component of a grouping or ordering. In a word, closure.
Extensible closure.

Compound names are interpreted by first interpreting the subnames that they
are constructed from. At each stage of subname interpretation an 〈Object
Name〉 is converted into a 〈Storage Key〉 for the object that it is resolved to. The
modules that implement the grouping and ordering primitives do not interpret
the subnames, they merely pass them to the naming system which returns the
〈Storage Key〉s they resolve to.

It was a long discussion which led to the use of storage keys rather than objectids.
A storage key differs from an objectid in that it gives the storage layer directions
as to where to try to locate the object in the logical tree ordering of the storage
layer. If the logical location changes, then in the worst case we leave a link
behind, and get an extra disk access like we get with an inode. (Inode numbers
are functionally objectids) In the better case, the repacker eventually comes
along, and changes all references by key to the new location, at least for all
objects that have not given their key to external naming systems the repacker
cannot repack. A 〈Storage Key〉 is assigned by the system at object creation,
and serves the purpose of allowing the system to concisely name the object, and
provide hints to the storage layer about which objects should be packed near
each other. The user does not directly interact with the 〈Storage Key〉 any
more often than C programmers hardcode pointers in hex. The packing locality
of keys may be redefined.

The Primitives

〈Key Object〉

A description of the contents of an object using the syntax of the current di-
rectory. For objects used to embody keywords this may be the keyword in its
entirety. If it contains spaces, etc. it must be enclosed in quotes. Note that mak-
ing it easy for third parties to add plug-in directory types is part of Namesys’s
current contract with Ecila. Ecila wants space efficient directories suitable for
use in implementing a term dictionary and its postings files for their Internet
search engine.

Example: [reindeer chimneys presents man]

In this, presents, reindeer, chimneys, and man are the contents of objects as-
sociated with the Santa Claus story. Each of them is searched for by contents,
and then when found they are converted into their 〈Storage Key〉s, and then
the grouping algorithm is fed their three 〈Storage Key〉s. The grouping mod-
ule then looks in the object headers of the three objects, gets the three sets of
objects the 〈Key Object〉s group to, and performs a set intersection.

Besides greater closure, another advantage of storing 〈Key Object〉s as objects
is that non-ASCII 〈Key Object〉s and ordering functions can be implemented as

12

a layer on top of the ASCII naming system, allowing the user to interact with
the naming system by pressing hyperbuttons, drawing pictures, making sounds,
and supplying other non-ASCII 〈Key Object〉s that the higher layers convert
into 〈Storage Key〉s.

There are endless content description techniques, if the directory owner supplies
an ordering function for the 〈Key Object〉s in a directory, one can generate a
search index for the directory using an directory plug-in which is fully orthogonal
to the ordering function, though perhaps slower in some cases than one that is
tailored for the ordering function. Users will find it easier to write ordering
functions than index creation objects, and will not always need the speed of
specialized indexes. We will need one ordering function for ASCII text, another
for numbers, another for sounds, perhaps someday one even for pictures of faces
(perhaps to be used by a law enforcement agency constructing an electronic mug
book, or a white pages implementation), etc. No system designer can provide
all the different and sometimes esoteric ordering functions which users will want
to employ. What we can do is create a library of code, from which users can
construct their own ordering function and their own directory plug-ins, and this
is the approach we are taking on behalf of Ecila.

For an Internet search engine one wants what is called a postings file, which
is like a directory in that there is no need to support a byte offset, and one
frequently wants to efficiently perform insertions into it.

Grouping

〈Grouping〉 ::= [〈Unordered List〉]
;

〈Unordered List〉 ::= 〈Unordered List〉
| 〈Object Name〉
| 〈Pruner〉

;
〈Pruner〉 ::= _〈Object Name〉

;

A 〈Grouping〉 is a list of 〈Object Name〉s and 〈Pruner〉s whose order has no
meaning. Every object has a list of objects it groups to (associates with in neural
network idiom) in its object header. A grouping is interpreted by performing
a set intersection of those lists for every object named in the grouping. In
the sense of the data model, the interpretation of a grouping is interpreted by
performing what is in the sense of the data model a set vicinity intersection.

Grouping is not transitive: [A] ⇒ B and [B] ⇒ C does not imply [A] ⇒ C

though it does imply that [[A]]⇒ C

A 〈Pruner〉 is an 〈Object Name〉 which has been preceded with an underscore
(_) to indicate that the object described should be passed a list of objects
named by the rest of the grouping, executed, and it will return a subset of the
list it was passed. Whether a member of the set is in the returned subset must
be fully independent of what the other members were of the set, or else the
results become indeterminate after application of a query optimizer, as with an
optimizer in use there is no guarantee provided of the order of application of
the pruners.

13

Ordering

〈Ordering〉 ::= 〈Object Name〉/〈Object Name〉
| 〈Object Name〉/〈Custom Programmed Syntax〉

;
〈Custom Programmed Syntax〉 ::= varies; provides extensibility hook

;

An ordering is a pairing of names, with the order representing information. The
first component of the ordering determines the module to which the second
component is passed as an argument. In contrast, a grouping first converts all
subnames to 〈Storage Key〉s by looking through the same current directory for
all of them in parallel, and then does its set intersection with the subdescriptions
already resolved.

Example: In resolving the query [my secrets]/[love letter susan] the sys-
tem would look for the objects with contents my and secrets, find both of them
and do a set intersection of all of objects those two objects both group to (are
associated with). This will allow it to find the [my secrets] directory, inside
of which it will look for the three objects love, letter, and susan. It will then
extract from their object headers the sets of objects those three words (‘love’,
‘letter’, and ‘susan’) group to, and do a set intersection which will find the
desired letter. The desired letter is not necessarily inside the [my secrets]

directory, though in this case it probably is.

A directory is an object named by the first component of an ordering, to which
the second component is passed, and which returns a set of 〈Storage Key〉s.
One can in principle use different implementations of the same directory object
without impacting the semantics and only affecting performance, as is often
done in databases.

There are flavors of directories:

• Custom programmed directories, aka filters, are any executable program
that will return a 〈Storage Key〉 when executed and fed the second com-
ponent as an argument. They provide extensibility. (They are the ordered
counterpart of pruners.) Another term for them is filter directories. Cus-
tom programmed directories whose name interpretation modules aren’t
unique to them will contain just the name of the module (filter), plus some
directory dependent parameters to be passed to the module. It should be
considered merely a syntax barrier directory, and not a fully custom pro-
grammed directory, if those parameters include a reference to a search
tree that the module operates on, and if that search tree adheres to the
default index structure. The connotations conveyed by the term ‘filter’ of
there being an original which is distorted are not always appropriate, but
in honesty this is not an issue about which we deeply care.

• Syntax barrier directories allow you to describe the contents of the object
they contain with a syntax different from their parents. Except for being
sorted by a different ordering function, the indexes of syntax barrier direc-
tories are standard in their structure, and use a standard index traversal
module. The index traversal module is ordering function independent.

14

There must be an ordering function for every 〈Key Object〉 employed
within a given syntax barrier directory. By contrast, 〈Custom Programmed

Syntax〉 could be anything which the syntax module somehow finds an ob-
ject with, possibly even creating the object in order to be able to find it.

• To cross a security barrier directory the user must use an ordered pair
of names with the security barrier as the first member of the pair, and
he must satisfy the security module of the secured directory. A security
barrier directory may be both a security and a syntax barrier directory, or
the security barrier directory may share the syntax module of its parents.

• Fully standard directories are those built using the default directory mod-
ule, and adding structure is their only semantic effect.

There is an aspect of customization which is beyond the scope of this paper, in
which one customizes the items employed by the storage layer to implement files
and directories. That is, the storage of the files and directories are implemented
by composing them of items, and these items have different types. We are now
creating the code for packing and balancing arbitrary types of items using item
handlers and object oriented balancing code, so as to make it easier to extend
our filesystem.

Ordering can be implemented more efficiently than group-
ing

The set intersections performed in evaluating the grouping primitive are nor-
mally much more expensive computationally than performing the classical file-
system lookup. Imposing excess structure on one’s data does not just at times
reduce the cost of human thinking ⌣̈, it can be used to reduce the cost of
automated computation as well.

When the cost to a user of learning structure is less important than the burden
on the machine, use of highly ordered names is often called for.

The Motivation for Different Syntactic Treatment of Order-
ing and Grouping, and Some of the Deeper Issues Revealed
by the Difference

An important difference between grouping and ordering affects syntax. It allows
us to represent an ordering with a single symbol (/) placed between the pair,
but requires two symbols ([and]) for each grouping. Imagine using < and >

as a two-symbol delimiter style alternative notation for ordering:

<<father-of mother-of>sister-of> = <father-of<mother-of sister-of>>

= <father-of mother-of sister-of> = father-of/mother-of/sister-of

All of the expressions above are equivalent in referring to the paternal great
aunt of the person who is the current context. The ones using nested pairs of
symbols to enclose pairs of subnames imply a false structure that requires the

15

user to think to realize the first two expressions are equivalent. The fourth is
the notation this naming system employs.

Grouping is different: Fast Acting Freddy is looking through the All-LA Shop-
ping Database for a single store with black reebok sneakers, a green leather
jacket, and a red beret so that he can dress an actor for a part before the
director notices he forgot all about him.

[[black reebok sneakers] [green leather jacket] [red beret]]

is not equivalent to [black reebok sneakers green leather jacket red beret]

which equals [red sneakers black reebok jacket green beret]

Ordering is not algebraically commutative (father-of/mother-of is not equiv-
alent to mother-of/father-of). Groupings, however, are algebraically com-
mutative ([large red] = [red large]).

Style

As a general principle, a more restricted system can avoid requiring the user
to repeatedly specify the restrictions, and if the user has no need to escape the
restrictions then the restricted system may be superior. This is why “4GLs”,
which supply the structure for the user’s query, are useful for some applications.
They are typically implemented as layers on top of unrestricting systems such
as this one.

This paper has addressed issues surrounding finding information, particularly
when the user’s clues are faint. When supporting other user goals, such as
exploring information, adding structure through substantial use of ordering can
be helpful. [Marchionini][McAleese].

When the user goal is finding, one should assume that of all the fragments of
information about an object, the user has some random subset of them. The
goal is to allow the user to use that random subset in a name, whatever that
subset might be. Some of that subset will be structural fragments. While
requiring the user to supply a structure fragment is as foolish as requiring him
to supply any other arbitrary fragment, allowing him to is laudable.

In the best of all worlds the object store would incorporate all valid possible
structurings of 〈Key Objects〉. The difficulty in implementing that is obvious.
[Metzler and Haas] discuss ways of extracting structure from English text doc-
uments, and why one would want to be able to use that structure in retrievals.
Unfortunately, there is an important difference between representing the struc-
ture of an English language sentence in a way that conveys its meaning, and
representing it in a way that allows it to be found by someone who knows only
a fragment of its semantic content. I doubt the wisdom of trying to advocate
the use of more than essential structure in searching.

You can allow users to avoid false structure; you cannot force them to. It is
important to teach those creating the structure that if they group a personnel
file with sex/female they should also group it with female.

Type checking can impose structure usefully. Its implementation can enhance
or reduce closure, depending on whether it is done right.

16

When To Decompound Groupings

There are dangers in excessive compounding of compound groupings analogous
to those of excessive ordering.

Let’s examine two examples of compound groupings, both of which are valid
both semantically and syntactically. One of them can be “decompounded” with
moderate information loss, and the other loses all meaning if decompounded.

Example: Finding a loquacious Celtic textbook salesman who told you in ex-
cruciating detail about how he was an ordinance researcher until one day he
went to a Grateful Dead concert.

[[Celtic textbook salesman] [ordinance researcher]]

vs.
[celtic textbook salesman ordinance researcher]

These two phrasings of the same query are not equivalent, but they are “close”.

Our second example is the one in which Fast Acting Freddy tries to find a
suspect by the objects he is associated with:

[[black reebok sneakers] [green leather jacket] [red beret]]

vs.
[black reebok sneakers green leather jacket red beret]

These two are not at all “close”. The difference between the two examples of
inequivalencies is that the subdescriptions within the second example describe
objects whose existence within the object store independednt of the store de-
scribed is worthwhile. The first does not, and it is more reasonable to try to
design so that the “decompounded” version of the query is used. False hits will
occur, but for large systems that’s better than asking the user to learn structure.

A higher level user interface might choose to present only one level to the user at
a time, and then once the user confirms that a subdescription has resolved prop-
erly it would let him incorporate it into a higher level description. There might
be 6 models of [black reebok sneakers], and Fast Acting Freddy should have
the opportunity to click his mouse on the exact model, and have the interface
substitute that object for his subdescription. Using such an interface an ad-
vanced user might simultaneously develop several subdescriptions, refine and
resolve them, and then use the mouse to draw lines connecting them into a
compound grouping. Closure makes it possible for that to work.

Examples of Creating Associations

• ← creates an association between all of the objects on the left hand side
and all of the objects on the right hand side.

• A \B is the set difference of A and B, and it resolves to the set of objects
in A except for those that are in B.

• A∩B resolves to the set intersection of A and B, the object that are both
in A and B.

• [AB] = [A] ∩ [B], by definition.

17

And so:

• animal ← (lives, moves)

• mammal ← ([animal], animal, ‘warm blooded’)

• cat ← ([mammal], hypernym/mammal, mammal, meronym/fur, fur,
meronym/whiskers, whiskers, hypernym/quadruped, quadruped,
capability/purr, purr, capability/meow, meow)

• Basil ← (owner/Nina, Nina, [siamese], siamese, clever, playful,
brave/overly, brave, ‘toilet explorer’)

• bag← ([container], container, consists-of/‘highly flexible material’, ‘highly
flexible material’)

• backpack ← ([bag], shoulderstrap/quantity/2, shoulderstap,
college-student, holonym/backpacker, meronym/shoulderstrap)

• mould ← ([fungi] - green/not, furry, ‘grows on’/surfaces/moist, ‘killed
by’/chlorine)

• fungi ← ([plant], plant, leaves/no, flowers/no, green/not)

• bird ← ([vertebrate], vertebrate, flies, feathers)

• penguin← ([bird] - flies, bird, hypernym/bird, swims, Linux, [Linux (mas-
cot, symbol)])

• siamese ← ([cat], cat, hair/short, short-hair)

Notice how we don’t associate siamese with short despite associating it
with hair/short, but we do associate Basil with Nina as well as with
owner/Nina.

• small ←0 little

The above means that small and little are synonyms, and are to be treated as
0 distance away from each other for vicinity calculation purposes. In other,
traditional Unix, words, they are hardlinked together.

Creating a serious ontology is not our field or task, but worth doing. The reader
is referred to WordNet (free), and Cyc by Doug Lenat (proprietary). While we
will focus on implementing primitives that allow for creating better ontologies,
we are happy to work with persons interested in contributing or porting an
ontology.

Other Projects Seeking To Increase Closure In

The OS

ATT’s Plan 9

[Plan 9] is being produced by the original authors of Unix at ATT research labs.
It has influenced CORBA, and /proc is a direct steal from it to Linux.

18

Their major focus is on integration.

Their major trick for increasing integration is unifying the name space.

Name spaces integrated into the Plan 9 file system include the status, control,
virtual memory, and environment variables of running processes. They have a
hierarchical analog to what the relational culture calls constructing views, that
the Plan 9 culture calls context binding.

Microsoft’s Information At Your Fingertips

Plan 9 ignores integration of application program name spaces, concentrating on
OS-oriented name spaces. Microsoft’s “Information at Your Fingertips” name
space integration effort appears to be taking the other approach, and focusing on
integrating the name spaces of the various Microsoft applications via OLE and
Structured Storage. The application group at Microsoft has long been better
staffed and funded than the OS group, and FS developers have long preferred to
simply ignore the needs of application builders generally. The primary semantic
disadvantages of Microsoft’s approach are primitives selected with insufficient
care, a lack of closure, and the use of an object oriented rather than set oriented
approach in both naming syntax and data model.

Realistically, one can say that folks within Microsoft have often made a state-
ment favoring name space integration, and in various areas have successfully
executed on it, but on the whole I rather suspect that the lack of someone
in marketing making a business case for $X in revenue resulting from name
space integration has crippled name space integration work at commercial OS
producers generally, including MS.

Internet Explorer

Internet Explorer attempts to unify the filesystem and Internet namespaces.
At the time of writing, the unity is so surface, with so little substance, that I
would describe it as having the look and feel of integration without most of the
substance. Perhaps this will change.

Microsoft’s Well-Known Performance Difficulties

Despite having many of the leading names in the industry on their payroll, they
have somehow managed to create a file system implementation with performance
so terrible that it is for the Unix customer base a significant consideration con-
tributing to hesitation in moving to NT. It may well have the worst performance
of any of the major OS file systems. Their implementation of OLE’s structured
storage offers extremely poor performance, and their excuse that it is due to
the incorporation of transaction concepts into their design is just a reminder
that they did a poor job at that as well. That they managed to implement
something intended to store small objects within a file, and implement it such
that it still suffers from 512-byte granularity problems, problems that they try
to somewhat overcome by encouraging the packing of several objects within
“storages” at horrible kludge costs. . .

19

Storage Layers Above the FS: A Sure Symptom The FS
Developer Has Failed

When filesystems aren’t really designed for the needs of the storage layers above
them, and none of them are, not Microsoft’s, not anybody’s, then layering results
in enormous performance loss. The very existence of a storage layer above the
filesystem means that the filesystem team at an OS vendor failed to listen to
someone, and that someone was forced to go and implement something on their
own.

You just have to listen to one of these meetings in which some poor application
developer tries to suggest that more features in the FS would be nice, I heard
one at a nameless OS vendor. The FS team responds to say disks are cheap,
small object storage isn’t really important, we haven’t changed the disk layout
in 10 years, and changing it isn’t going to fly with the gods above us about whom
we can do nothing. At these meetings you start to understand that most people
who go into filesystem design are persons who didn’t have the guts to pursue a
more interesting field in CS. There is a sort of reverse increasing returns effect
that governs FS research, in which the more code becomes fixed on the current
APIs, the more persons in the field who react with fear to any thought of the
field of FS semantics being other than a dead research topic, the less research
gets done, and the fewer persons of imagination see a reason to enter the field.
Every time one vendor gets a little forward in adding functionality, the other
vendors go on a FUD campaign about it breaking standards and therefore being
dangerous for mission critical usage. This is a field in which only performance
research is allowed, and every other aspect is simply dead. Namesys seeks to
raise the dead, and is willing to commit whatever unholy acts that requires.

There is no need for two implementations of the set primitive, one called di-
rectories, the other called a file with streams, each having a different interface.
File systems should just implement directories right, give them some more op-
tional features, and then there is no need at all for streams. If you combine
allowing directory names to be overloaded to also be filenames when acted on
as files, allowing stat data to be inherited, allowing file bodies to be inherited,
and implement filters of various kinds, then in the event that the user happens
to need the precise peculiar functionality embodied by streams, they can have
it by just configuring their directory in a particular way. There was a lengthy
Linux-kernel thread on this topic which I won’t repeat in more detail here.

The tree architecture of the storage layer of this FS design will lend itself to
a distributed caching system much more effectively than the Microsoft storage
layer, in part due to its ability to cache not just hits and misses of files, but to
cache semantic localities (ranges). For more on this topic see later in this paper.

Rufus

The Rufus system [Mea] indexes information while leaving it in its original
location and format. While it does allow the user to create a unified name space,
it does not choose to integrate that name space into the operating system. Even
so, it is immensely useful in practice, and strongly hints at what the OS could

20

gain if it had a more than hierarchical name space with a data model oriented
towards what [Mea] calls “semi-structured information”, such as you find in
the RFC822 format for email. When you have 7000 pieces of mail, and linear
searching the mail with a utility like grep takes 10 minutes, it is nice to be able
to quickly keyword search via inverted indexes for the mail whose from: field
contains billg and that has the words “exclusive” and “bundling” in the body of
the message, as you hurriedly search for an old email just before an appearance
at court.

Semantic File System

The Semantic File System comes closest to addressing the needs I have de-
scribed. It is a Unix compatible file system with more than hierarchical naming
(attribute based is the term they use). Its data model unfortunately has the
important flaw of lacking closure (in it names of objects are not themselves
objects). In my upcoming discussion of the unnecessary lack of closure in hy-
pertext products, notice that the arguments apply to the Semantic File System
(and so I won’t duplicate them here).

OS/400

IBM’s OS/400 employs a unified relational name space. The section of this
paper entitled A System Should Reflect Rather than Mold Structure will cover
its problems of forcing false structure. Inadequate closure due to mandatory
type checking is another source of difficulties for it. While users moan about
these two unnecessary design flaws, the essence of the opinions AS/400 partisans
have expressed to me has been that the unification of its name space is a great
advantage that OS/400 has over Unix. I claim these users were right, and later
in this paper will propose doing something about it.

Conclusion

While I spent most of this paper on why adding structure to information can be
harmful, particularly when it is intended to be found by others sifting through
large amounts of other information, this was purely because it is a harder argu-
ment than why deleting structure is harmful. My goal was not to be better at
unstructured applications than keyword systems, or better at structured appli-
cations than the hierarchical and relational systems — the goal is to be more
flexible in allowing the user to choose how structured to be, while still being
within a single name space.

I claimed that multiple fragmented name spaces cannot match the power and
ease of name spaces integrated with closure: closure makes a naming system far
more powerful by increasing its ability to compound complex descriptions out
of simpler ones. The strong points of this naming system’s design are various
forms of generalizing abstractions already known to the literature, for greater
closure.

21

Acknowledgements

David P. Anderson and Clifford Lynch helped enormously in rounding out my
education, and improving my paper. Their generosity with their time was re-
markable. David P. Anderson was simply a great professor, and it was a privilege
to work with him. Brian Harvey informed me that it wasn’t too obvious to men-
tion that an object store should be unified. Cimmaron Taylor provided me with
many valuable late-night discussions in the early stages of this paper. I would
like to thank Bill Cody and Guy Lohman of the database group at the IBM
Almaden Research Center for a wonderful learning experience.

Vladimir Saveliev kept this file system going when others fell by the wayside.
He started as the most junior programmer on the team, and through sheer hard
work and dedication to excellence outshone all the other more senior researchers.
Of course after some time he could no longer be considered a junior programmer.

References

[BM85] David C. Blair and M. E. Marron. Evaluation of retrieval effective-
ness for a full-text document-retrieval system. 28:289–299, 1985.

[CW84] Ronald Curtis and Larry Wittie. Global naming in distributed sys-
tems. IEEE Software, 1(3):76–80, July 1984.

[Dat86] C. J. Date. An Introduction to Database Systems. Addison-Wesley
Pub. Co., Reading, Mass., fourth edition, 1986. Contains a well-
written substantive textbook sneer at the problems of hierarchical
naming systems, and a well-annotated bibliography.

[Mea] Eli Messinger and et al. Rufus: The information sponge.

[PPT+93] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil
Winterbottom. The use of name spaces in Plan 9. Operating Systems

Review, 27(2):72–76, 1993. Plan 9 is an operating system intended to
be the successor to Unix, and greater integration of its name spaces
is its primary focus.

[PT88] Walter D. Potter and Robert P. Trueblood. Traditional, semantic,
and hyper-semantic approaches to data modeling. IEEE Computer,
pages 53–63, June 1988.

[Sal86] Gerard Salton. Another look at automatic text-retrieval systems.
Communications of the ACM, 29(7):648–656, 1986.

[SFW88] Gerard Salton, Edward A. Fox, and Harry Wu. Extended boolean
information retrieval. Communications of the ACM, 31(2):170–188,
1988.

[SS77] John Miles Smith and Diane C. P. Smith. Database abstractions: Ag-
gregation and generalization. ACM Trans. Database Syst., 2(2):105–
133, 1977.

22

[VR79] C. J. Van Rijsbergen. Information Retrieval, 2nd edition. Dept. of
Computer Science, University of Glasgow, 1979.

23

