
When good interfaces go crufty

Matthew Thomas

August 13, 2004

In Vernor Vinge’s sci-fi novel A fire upon the deep, he presents the idea
of “software archeology”. Vinge’s future has software engineers spending large
amounts of time digging through layers of decades-old code in a computer system
— like layers of dirt and rubbish in real-world archeology — to find out how, or
why, something works.

So far, in 2002, this problem isn’t so bad. We call such electronic garbage
“cruft”, and promise to get rid of it someday. But it’s not really important right
now, we tell ourselves, because computers keep getting faster, and we haven’t
quite got to the point where single programs are too large for highly coordinated
teams to understand.

But what if cruft makes its way into the human-computer interface? Then
you have problems, because human brains aren’t getting noticably faster. (At
least, not in the time period we’re concerned with here.) So the more cruft there
is in an interface, the more difficult it will be to use.

Unfortunately, over the past 20 years, I’ve noticed that cruft has been ap-
pearing in computer interfaces. And few people are trying to fix it. I see two
main reasons for this.

1. Microsoft and Apple don’t want to make their users go through any re-
training, at all, for fear of losing market share. So rather than make their
interfaces less crufty, they concentrate on making everything look pretty.

2. Free Software developers have the ability to start from a relatively cruft-
free base, but (as a gratuitously broad generalization) they have no imag-
ination whatsoever. So rather than making their interfaces more usable,
they concentrate on copying whatever Microsoft and Apple are doing,
cruft and all.

Here are a few examples of interface cruft.

1. In the 1970s and early ’80s, transferring documents from a computer’s
memory to permanent storage (such as a floppy disk) was slow. It took
many seconds, and you had to wait for the transfer to finish before you
could continue your work. So, to avoid disrupting typists, software de-
signers made this transfer a manual task. Every few minutes, you would
“save” your work to permanent storage by entering a particular command.

Trouble is, since the earliest days of personal computers, people have been
forgetting to do this, because it’s not natural. They don’t have to “save”
when using a pencil, or a pen, or a paintbrush, or a typewriter, so they
forget to save when they’re using a computer. So, when something bad

1



happens, they’ve often gone too long without saving, and they lose their
work.

Fortunately, technology has improved since the 1970s. We have the power,
in today’s computers, to pick a sensible name for a document, and to save
it to a person’s desktop as soon as she begins typing, just like a piece
of paper in real life. We also have the ability to save changes to that
document every couple of minutes (or, perhaps, every paragraph) without
any user intervention.

We have the technology. So why do we still make people save each of their
documents, at least once, manually? Cruft.

2. The original Macintosh, which introduced graphical interfaces to the gen-
eral public, could only run one program at a time. If you wanted to use
a second program, or even return to the file manager, the first program
needed to be unloaded first. To make things worse, launching programs
was slow, often taking tens of seconds.

This presented a problem. What if you had one document open in a
program, and you closed that document before opening another one? If
the program unloaded itself as soon as the first document was closed, the
program would need to be loaded again to open the second document,
and that would take too long. But if the program didn’t unload itself, you
couldn’t launch any other program.

So, the Mac’s designers made unloading a program a manual operation. If
you wanted to load a second program, or go back to the file manager, you
first chose a menu item called “Quit” to unload the first program. And
if you closed all the windows in a program, it didn’t unload by itself – it
stayed running, usually displaying nothing more than a menu bar, just in
case you wanted to open another document in the same program.

Trouble is, the “Quit” command has always been annoying and confusing
people, because it’s exposing an implementation detail – the lack of mul-
titasking in the operating system. It annoys people, because occasionally
they choose “Quit” by accident, losing their careful arrangement of win-
dows, documents, toolboxes, and the like with an instantaneity which is
totally disproportionate to how difficult it was to open and arrange them
all in the first place. And it confuses people, because a program can be
running without any windows being open, so — while all open windows
may belong to the file manager, which is now always running in the back-
ground — menus and keyboard shortcuts get sent to the invisible program
instead, producing unexpected behavior.

Fortunately, technology has improved since 1984. We have the power, in
today’s computers, to run more than one program at once, and to load
programs in less than five seconds.

We have the technology. So why do we still punish people by including
“Quit” or “Exit” menu items in programs? Cruft.

3. As I said, the original Macintosh could only run one program at a time. If
you wanted to use a second program, or even return to the file manager,
the first program needed to be unloaded first.

2



This presented a problem when opening or saving files. The obvious way
to open a document is to launch it (or drag it) from the file manager. And
the obvious way to save a document in a particular folder is to drag it to
that folder in the file manager. But on the Mac, if another program was
already running, you couldn’t get to the file manager. What to do? What
to do?

So, the Mac’s designers invented something called a “file selection dialog”,
or “filepicker” – a lobotomized file manager, for opening and saving docu-
ments when the main file manager wasn’t running. If you wanted to open
a document, you chose an “Open. . . ” menu item, and navigated your
way through the filepicker to the document you wanted. Similarly, if you
wanted to save a document, you chose a “Save. . . ” menu item, entered a
name for the document, and navigated your way through the filepicker to
the folder you wanted.

Trouble is, this interface has always been awkward to use, because it’s not

consistent with the file manager. If you’re in the file manager and you
want to make a new folder, you do it one way; if you’re in a filepicker
and you want to make a new folder, you do it another way. In the file
manager, opening two folders in separate windows is easy; in a filepicker,
it can’t be done.

Fortunately, technology has improved since 1984. We have the power,
in today’s computers, to run more than one program at once, and to
run the file manager all the time. We can open documents from the
file manager without quitting all other programs first, and we can save
copies of documents (if necessary) by dragging them into folders in the
file manager.

We have the technology. So why do we still make people use filepickers at
all? Cruft.

4. This last example is particularly nasty, because it shows how interface
cruft can be piled up, layer upon layer.

(a) In Microsoft’s MS-DOS operating system, the canonical way of iden-
tifying a file was by its pathname: the concatenation of the drive
name, the hierarchy of directories, and the filename, something like
C:\WINDOWS\SYSTEM\CTL3DV2.DLL. If a program wanted to keep track
of a file — in a menu of recently-opened documents, for example — it
used the file’s pathname. For backward compatibility with MS-DOS,
all Microsoft’s later operating systems, right up to Windows XP, do
the same thing.

Trouble is, this system causes a plethora of usability problems in
Windows, because filenames are used by humans.

• What if a human renames a document in the file manager, and
later on tries to open it from that menu of recently-opened docu-
ments? He gets an error message complaining that the file could
not be found.

• What if he makes a shortcut to a file, moves the original file,
and then tries to open the shortcut? He gets an error message,

3



as Windows scurries to find a file which looks vaguely similar to
the one the shortcut was supposed to be pointing at.

• What happens if he opens a file in a word processor, then renames
it to a more sensible name in the file manager, and then saves
it (automatically or otherwise) in the word processor? He gets
another copy of the file with the old name, which he didn’t want.

• What happens if a program installs itself in the wrong place, and
our fearless human moves it to the right place? If he’s lucky, the
program will still work – but he’ll get a steady trickle of error
messages, the next time he launches each of the shortcuts to that
program, and the next time he opens any document associated
with the program.

Fortunately, technology has improved since 1981. We have the power,
in today’s computers, to use filesystems which store a unique identi-
fier for every file, separate from the pathname – such as the file ID
in the HFS and HFS+ filesystems, or the inode in most filesystems
used with Linux and Unix. In these filesystems, shortcuts and other
references to particular files can keep track of these unchanging iden-
tifiers, rather than the pathname, so none of those errors will ever
happen.

We have the technology. So why does Windows still suffer from all
these problems? Cruft.

Lest it seem like I’m picking on Microsoft, Windows is not the worst
offender here. GNU/Linux applications are arguably worse, because
they could be avoiding all these problems (by using inodes), but
their programmers so far have been too lazy. At least Windows
programmers have an excuse.

(b) To see how the next bit of cruft follows from the previous one, we
need to look at the mechanics of dragging and dropping. On the
Macintosh, when you drag a file from one folder to another, what
happens is fairly predictable.

• If the source and the destination are on different storage devices,
the item will be copied.

• If the source and destination are on the same storage device, the
item will be moved.

• If you want the item to be copied rather than moved in the latter
case, you hold down the Option key.

Windows has a similar scheme, for most kinds of files. But as I’ve
just explained, if you move a program in Windows, every shortcut to
that program (and perhaps the program itself) will stop working. So
as a workaround for that problem, when you drag a program from
one place to another in Windows, Windows makes a shortcut to it

instead of moving it – and lands in the Interface Hall of Shame as a
result.

Naturally, this inconsistency makes people rather confused about ex-
actly what will happen when they drag an item from one place to
another. So, rather than fixing the root problem which led to the

4



workaround, Microsoft invented a workaround to the workaround. If
you drag an item with the right mouse button, when you drop it
you’ll get a menu of possible actions: move, copy, make a shortcut,
or cancel. That way, by spending a couple of extra seconds choosing
a menu item, you can be sure of what is going to happen. Unfortu-
nately this earns Microsoft another citation in the Interface Hall of
Shame for inventing the right-click-drag, “perhaps the least intuitive
operation ever conceived in interface design”. Say it with me: Cruft.

(c) It gets worse. Dragging a file with the right mouse button does that
fancy what-do-you-want-to-do-now-menu thing. But normally, when
you click the right mouse button on something, you want a shortcut
menu – a menu of common actions to perform on that item. But if
pressing the right mouse button might mean the user is dragging a
file, it might not mean you want a shortcut menu. What to do, what
to do?

So, Windows’ designers made a slight tweak to the way shortcut
menus work. Instead of making them open when the right mouse
button goes down, they made them open when the right mouse button
comes up. That way, they can tell the difference between a right-click-
drag (where the mouse moves) and a right-click-I-want-a-shortcut-
menu (where it doesn’t).

Trouble is, that makes the behavior of shortcut menus so much worse
that they end up being pretty useless as an alternative to the main
menus.

• They take nearly twice as long to use, since you need to release
the mouse button before you can see the menu, and click and
release a second time to select an item.

• They’re inconsistent with every other kind of menu in Windows,
which opens as soon as you push down on the mouse button.

• Once you’ve pushed the right mouse button down on something
which has a menu, there is no way you can get rid of the menu
without releasing, clicking the other mouse button, and releasing
again. This breaks the basic GUI rule that you can cancel out
of something you’ve pushed down on by dragging away from it,
and it slows you down still further.

In short, Windows native shortcut menus are so horrible to use that
application developers would be best advised to implement their own
shortcut menus which can be used with a single click, and avoid the
native shortcut menus completely. Once more, with feeling: Cruft.

(d) Meanwhile, we still have the problem that programs on Windows
can’t be moved around after installation, otherwise things are likely
to break. Trouble is, this makes it rather difficult for people to find
the programs they want. In theory you can find programs by drilling
down into the “Program Files” folder, but they’re arranged rather
uselessly (by vendor, rather than by subject) – and if you try to
rearrange them for quick access, stuff will break.

So, Windows’ designers invented something called the “Start menu”,
which contained a “Programs” submenu for providing access to pro-

5



grams. Instead of containing a few frequently-used programs (like
Mac OS’s Apple menu did, before OS X), this Programs submenu
has the weighty responsibility of providing access to all the useful
programs present on the computer.

Naturally, the only practical way of doing this is by using multi-
ple levels of submenus – thereby breaking Microsoft’s own guidelines
about how deep submenus should be.

And naturally, rearranging items in this menu is a little bit less obvi-
ous than moving around the programs themselves. So, in Windows
98 and later, Microsoft lets you drag and drop items in the menu it-
self – thereby again breaking the general guideline about being able
to cancel a click action by dragging away from it.

This Programs menu is the ultimate in cruft. It is an entire system
for categorizing programs, on top of a Windows filesystem hierar-
chy which theoretically exists for exactly the same purpose. Gnome
and KDE, on top of a Unix filesystem hierarchy which is even more
obtuse than that of Windows, naturally copy this cruft with great
enthusiasm.

Following those examples, it’s necessary to make two disclaimers.
Firstly, if you’ve used computers for more than six months, and become

dulled to the pain, you may well be objecting to one or another of the examples.
“Hey!” you’re saying. “That’s not cruft, it’s useful !” And, no doubt, for
you that is true. In human-computer interfaces, as in real life, horrible things
often have minor benefits to some people. These people manage to avoid, work
around, or blame on “user stupidity”, the large inconvenience which the cruft
imposes on the majority of people.

Secondly, there are some software designers who have waged war against
cruft. Word Place’s Yeah Write word processor abolished the need for saving
documents. Microsoft’s Internet Explorer for Windows, while having many
interface flaws, sensibly abolished the “Exit” menu item. The Acorn’s RISC OS
abolished filepickers. The Mac OS uses file IDs to refer to files, avoiding all the
problems I described with moving or renaming. And the ROX Desktop eschews
the idea of a Start menu, in favor of using the filesystem itself to categorize
programs.

However, for the most part, this effort has been piecemeal and on the fringe.
So far, there has not been a mainstream computing platform which has seriously
attacked the cruft that graphical interfaces have been dragging around since the
early 1980s.

So far.

6


